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We designed the experimental generation system of the optical GHZ-like and clus-
ter-like quadripartite entangled states for continuous variables. We theoretically 
demonstrated that the two different types of quadripartite entangled states can be 
obtained by the linearly optical transformation of four amplitude-quadrature and 
phase-quadrature squeezed states produced from a pair of nondegenerate optical 
parametric amplifiers under appropriate phase relations. The criteria for full in-
separability of quadripartite cluster-like state were deduced, and the dependency of 
the quadripartite entanglement on the initial squeezing degree, the transmission 
efficiencies of the system and the detection efficiency of homodyne detection were 
numerically calculated.  

continuous variable quadripartite entanglement, GHZ-like state, cluster-like state 

1  Introduction 

The quantum entangled states involving more than two subsystems were named multipartite en-
tangled states, in which the entanglement was shared by more than two parties. Generally, the wave 
function of the multipartite entangled states cannot be written to the direct product of the subsystem 
wave functions, so the quantum states are fully inseparable. There are different kinds of multipar-
tite entangled states which have different constructions and variant physical features. Thus the 
wave function and the criterion of the full inseparability characterizing these multipartite entangled 
states are also not the same. The most typical and extensively applied two kinds of multipartite 
entangled states are GHZ state and Cluster state, the wave functions of which are denoted in the 
following expressions, respectively[1]: 
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where N is the number of the subsystems involved in the multipartite entangled states, a stands for 

a single subsystem, 
1

N

a=
⊗  means that the operation of the direct product runs over all lattices sites 

(“nodes”) occupied by the subsystems in the cluster state, ( 1)a
zσ +  is the Pauli matrix of the “node” 

at (a+1) site and ( 1) 1.N
zσ + ≡  Due to different constructions the entanglement persistency of cluster 

state, such as ~N/2 subsystems, has to be measured to disentangle an N-partite cluster state, how-
ever for an N-partite GHZ state the disentanglement can be achieved only by measuring a sub-
system. 

Multipartite entanglement is the basic resource for realizing quantum information network and 
quantum computation. Five photon Greenberger-Horne-Zeilinger (GHZ) polarization entangled 
states[2], four photon cluster entangled states[3] and one-way quantum computation based on four 
photon cluster entangled states[3] have been experimentally demonstrated. In recent years the in-
vestigation of continuous variable (CV) quantum information with amplitude-quadratures and 
phase-quadratures of electromagnetic fields has attracted extensive interest, however, the experi-
mental study in this realm is still slower than the investigation with the discrete variable. CV tri-
partite GHZ entangled states have been generated by several groups and been applied in controlled 
dense coding quantum communication[4], quantum teleportation network[5] and quantum secret 
sharing[6], etc. The generation of CV multipartite entangled states of more than three subsystems 
has not been reported so far. 

CV GHZ-like state of optical field is a simultaneous eigenstate of the sum of total amplitude 
(phase)-quadrature and the difference of relative phase (amplitude)-quadrature of N subsystems. 
When the variances of the sum and difference of these quadratures are below the corresponding 
standard quantum limit, the state is GHZ-like entangled state[4－6]. Besides GHZ-like states, there is 
another type of CV multipartite entangled state, which is cluster-like state[7]. This type of multi-
partite entangled state has the “chain structure” in one-dimension, and can be acquired by squeezed 
optical field and quantum nondemolition (QND) coupling between next two modes[7]. When N = 2 
and N = 3, the cluster-like state is the same with GHZ-like state, however they are different when N > 

3. It has been recently proved that universal quantum computation can be achieved with CV 
cluster-like states as long as a non-Gaussian measurement can be performed[8]. 

In recent years, we have accomplished CV quantum dense coding[9], controlled dense coding 
quantum communication[4] and quantum entanglement swapping[10] utilizing the EPR entangled 
optical fields generated from nondegenerate optical parametric amplifier (NOPA) operating at 
deamplification. We consider that using NOPA as an initial source of squeezed and entangled states 
the experimental setup can be simplified efficiently, so it is beneficial for practical applications. For 
the necessities of developing quantum communication network and quantum computation, we 
designed the generation system of CV quadripartite entangled states using NOPAs as the basic 
devices. We have demonstrated theoretically that the quadripartite GHZ-like states and the clus-
ter-like states could be generated by means of the QND coupling of four quadrature-squeezed 
states of light from a pair of NOPAs with certain phase relations. The dependencies of the quad-
ripartite entanglement on the initial squeezing degree, the transmission efficiencies of the system 
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and the detection efficiency of homodyne detectors were calculated and the criteria of the quantum 
full inseparability for quadripartite cluster-like state were deduced. The boundaries of the physical 
parameters which satisfy the full inseparability criteria of quadripartite GHZ-like and cluster-like 
states were numerically calculated. The results provide the valuable theoretical reference for the 
designs of the experimental systems. 

2  Generation principle of quadripartite GHZ-like and cluster-like en-
tangled states 

2.1  The squeezing of the output fields from NOPA 

The amplitude and phase quadratures of the quantized optical field a  are defined as 

 

†

†

1 ( ),
2

( ),
2

a

a

X a a

iY a a

= +

= − −
 (3) 

where a and 
†a  are the annihilation and creation operators of the optical field. When the optical 

field is in a coherent state or vacuum state, the variances of the quadratures are ( )aV X  = ( )aV Y  = 
1/4. 

The amplitude ( ,a bX ) and phase ( ,a bY ) quadratures of the signal and idler modes (a and b) from 

a NOPA consisting of a type-II nonlinear crystal and operating at deamplification (the pump light 
and the injected signal light are out of phase) are expressed respectively by[11] 
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where r is the squeezing parameter (or correlation parameter), which depends on the strength and 

the time of parametric interaction in NOPA. (0)
iX  and 

(0)
iY  (i = a, b) are the amplitude and phase 

quadratures of the injected signal light (coherent state). The correlation variances of the output 

fields are ( )a bV X X+ = ( )a bV Y Y− = 2e / 2.r−  So the output fields, 
a and b, are a pair of Einstein-Podolsky-Rosen (EPR) entangled 
light beams with the anticorrelation of the amplitude quadratures 
and the correlations of the phase quadratures. r = 0 corresponds to 
no correlation, while r → ∞  corresponds to ideal entanglement. 

The polarization directions of the output fields from the NOPA 
are shown in Figure 1. The polarization directions of modes a and b 
are at 0° and 90° respectively, which correspond to the polarization 
directions of signal and idler optical modes in the type-II nonlinear 
crystal. The coupling modes c and d of modes a and b at the di-
rections of ±45° are 

 
Figure 1  The polarization direction 
of the output fields from NOPA. 
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The amplitude and phase quadratures of coupling modes c and d are, respectively, 
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It is obvious that modes c and d are the amplitude-quadrature and the phase-quadrature squeezed 
state of light, respectively[12]. 

2.2  Generation of quadripartite GHZ-like state 

The generation system of quadripartite GHZ-like and cluster-like states is shown in Figure 2. The 
four quadrature squeezed optical fields (denoted by a1, a2, a3 and a4) from a pair of NOPAs 
(NOPA1 and NOPA2) are coupled with the optical beamsplitters. Suppose a1 and a4 are 
phase-quadrature squeezed lights, and a2 and a3 are amplitude-quadrature squeezed lights. Their 
amplitude and phase quadratures are expressed as follows, respectively: 
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 (7) 

where we have considered that the squeezing degrees of the two NOPAs are the same, i.e. an  
 

 
 

Figure 2  Generation system of quadripartite entangled states. NOPA: nondegenerate optical parametric amplifier; BS: 50% 
beam splitter; PS: phase shift. 
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identical squeezing parameter r is used. The variances of the amplitude and phase quadratures of 
the injected coherent field, (0)

iaX  and 
(0) ,
iaY  are taken to be the shot noise limit (SNL), (0)( )

iaV X  = 

(0)( )
iaV Y  = 1/4. 

For the generation of quadripartite GHZ-like state we couple the two amplitude squeezed lights 
a2 and a3 on a 50% beam splitter (BS1), with π/2 phase shift. The amplitude and phase quadratures 
of two output fields (modes a5 and a6) are, respectively, 
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 (8) 

where 2ξ  is the transmission efficiencies of a2 and a3, i
Xν (

i
Yν ) denotes the amplitude (phase) 

quadrature of the vacuum field introduced by losses. Then, coupling the optical fields a5 and a1 on 
a 50% beam splitter (BS2) with zero phase shift, and coupling the optical fields a6 and a4 on the 
other 50% beam splitter (BS3) with zero phase shift also, the amplitude and phase quadratures of 
the resultant output modes b1, b2, b3 and b4 are, respectively, 
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where the superscript G denotes GHZ-like state, 3ξ  is the transmission efficiency of modes a5 and 

a6, 1ξ  and 4ξ  are the transmission efficiencies of modes a1 and a4 respectively, and η is the de-
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tection efficiency of the detectors. Substituting eqs. (7) and (8) into (9), and calculating the sum of 
the amplitude quadratures and the difference of the relative phase quadratures, we have 

1 2 3 4 22

5 6 7 8 9 10

(0)
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2 e 2 (1 )

                                       2 (1 )( ) 1 ( ),
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For quadripartite GHZ-like state, we can see from eq. (10a) that the noise of the sum of the 
amplitude quadratures depends on the noise of the amplitude quadrature of the amplitude squeezed 
light a2, and the noises of the phase difference in (10b) and (10d) depend on the noise of the phase 
quadrature of phase squeezed light a1 and a4 respectively, while the noises of phase differences in 
eqs. (10c), (10e), (10f) and (10g) depend on the noises of both squeezed amplitude and phase 
quadratures. So the correlation variances may be below the corresponding SNL and satisfy the full 
inseparability criteria of quadrature entanglement for certain values of the squeezing parameter. In 
the ideal case ( ,r → ∞  ξ → 1, η → 1), the quadripartite GHZ-like state is a simultaneous eigen-

state of 
1

G
bX +

2 3 4
0G G G

b b bX X X+ + →  and 0
i j

G G
b bY Y− →  ( ,i j = 1 4, － i j≠ ). 

2.3  Generation of quadripartite cluster-like state 

In the system shown in Figure 2, the quadripartite cluster-like state can be generated also, once we 
control the phase shift between a6 and a4 to π/2, and keep the rest unchanging. In this case the 
amplitude and phase quadratures of the output fields are given by 
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where the superscript C denotes cluster-like state. Substituting eqs. (7) and (8) into eq. (11), and 
calculating the correlations of the amplitude and phase quadratures between the subsystems of 
cluster-like state, we have, 
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where (12b) and (12c) only depend on the squeezed quadrature of phase squeezed lights 1a  and 

4a , respectively, while (12a) and (12d) depend on squeezed quadratures of both modes 2a , 4a  

and 1a , 3a , respectively. In the ideal case ( ,r → ∞  ξ → 1, η → 1), the quadripartite cluster-like 

state is a simultaneous eigenstate with perfect amplitude correlations 
1 2 3

2C C C
b b bX X X+ + →0, 

3 4

C C
b bX X− → 0 and perfect phase correlations 

1 2

C C
b bY Y− → 0, 

2 3 4
2 C C C

b b bY Y Y− + + → 0. 

3  The inseparability criteria of quadripartite entanglement 

When the state vector of a quantum system comprising two or more than two subsystems cannot be 
written into the direct product of the state vectors of respective subsystem in any quantum me-
chanical picture, there is the quantum inseparability among these subsystems. The observation to 
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any one subsystem must affect other subsystems even if they are separated far away spatially. The 
non-local quantum correlations are called the quantum entanglement. The inseparability criteria of 
CV quadripartite GHZ-like entanglement have been deduced in ref. [13]. The modes b1, b2, b3 and 
b4 are in quantum inseparable quadripartite GHZ-like state if they simultaneously violate any two 
of the following three inequalities: 
 

1 2 1 2 3 43 4( ) ( ) 1,G G G G G G
b b b b b bV Y Y V X X g X g X− + + + + ≥  (13a) 

 
2 3 1 2 3 41 4( ) ( ) 1,G G G G G G

b b b b b bV Y Y V g X X X g X− + + + + ≥  (13b) 

 
3 4 1 2 3 41 2( ) ( ) 1,G G G G G G

b b b b b bV Y Y V g X g X X X− + + + + ≥  (13c) 

where ig  is the gain factor. For ideal squeezing ( r → ∞ ), ig =1, while for nonideal squeezing we 

need to change ig  to minimize the left hand of eq. (13), and the corresponding gain factor is called 

the optimal gain factor opt
ig . 

The criteria for the inseparability of the quadripartite cluster-like state have not been reported yet. 
We deduce the inseparability criteria of the CV quadripartite cluster-like entanglement according to 
the methods used in ref. [13]. At first we consider the following linear combinations: 

 1 1 2 2

1 1 2 2

ˆ ˆ ˆˆ ,
ˆ ˆ ˆˆ .

N N

N N

u h X h X h X

v g Y g Y g Y

= + + +

= + + +
 (14) 

The necessary condition for separability and partial separability of N partite is 
 1 2 1 2ˆ ˆ( ) ( ) ( , , , , , , , ),N NV u V v f h h h g g gρ ρ+ ≥  (15) 

where 1 2 1 2( , , , , , , , )N Nf h h h g g g  is the function of parameter 1 2, , , Nh h h  and 1 2, , , Ng g g . 
For any arbitrary partially separable form, the total density operator can be written as 
 , , , ,ˆ ˆ ˆ

r si i k m i k n
i

ρ η ρ ρ= ⊗∑  (16) 

with a distinct pair of  “separable modes” (m, n), and the other modes ,r sk k≠  where the weight     

iη ≥ 0 and i
i

η∑ = 1. van Loock et al. have proved that the condition for testing separability or 

partial separability of N partite is 

 1ˆ ˆ( ) ( ) .
2 r r s sm m k k n n k k

r s
V u V v h g h g h g h gρ ρ

⎛ ⎞
+ + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑≥  (17) 

The states are entangled if the above condition is violated. The bound is / 2j j
j

h g∑  ( j = 1, , N) 

for fully separable state, which is larger than the bound of the partial separable state. So if the 
necessary condition of partially separable state is violated, the necessary condition of fully sepa-
rable state must be violated. For the quadripartite entanglement we consider four modes (k, l, m, n), 
which is the arbitrary combination of (1, 2, 3, 4). The following three inequalities are used for 
judging the CV quadripartite cluster-like entanglement: 
 

1 2 3 1 23( ) ( ) 1,C C C C C
b b b b bV X X g X V Y Y+ + + − ≥  (18a) 
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For inequality (18a), we have h1 = h2 = g1 = −g2 = 1, h3 = g, g3 = h4 = g4 = 0. For the arbitrary com-
bination of (k, l, m, n), if (k, l, m, n) = (2, 3, 4, 1) and (k, l, m, n) = (1, 3, 4, 2), the bound of         
all fluctuations is 1, then inequality (18a) can be used as the necessary condition of the par-    
tially separable states ρ̂ = ,134 ,2ˆ ˆ ,i i i

i
η ρ ρ∑ ⊗  ,234 ,1ˆ ˆ ˆ ,i i i

i
ρ η ρ ρ= ∑ ⊗  ,14 ,23ˆ ˆ ˆi i i

i
ρ η ρ ρ= ∑ ⊗  and ρ̂ =  

,13 ,24ˆ ˆ .i i i
i
η ρ ρ∑ ⊗  But for (k, l, m, n) = (1, 2, 4, 3) and (k, l, m, n) = (1, 2, 3, 4), the bound of all 

fluctuations is 0, so the inequality (18a) cannot be used as the necessary condition of partially 
separable states ,124 ,3ˆ ˆ ˆi i i

i
ρ η ρ ρ= ∑ ⊗ , ,123 ,4ˆ ˆ ˆi i i

i
ρ η ρ ρ= ∑ ⊗  and ,12 ,34ˆ ˆ ˆi i i

i
ρ η ρ ρ= ∑ ⊗ . In the same 

way, we can test the type of partially separable states corresponding to inequalities (18b) and (18c). 
We can see that three inequalities in eq. (18) are the necessary condition for separable and partially 
separable quadripartite state: 

 

,123 ,4

,124 ,3

,134 ,2

,234 ,1

ˆ ˆ ˆ   (18b),

ˆ ˆ ˆ  (18b), (18c),

ˆ ˆ ˆ  (18a), (18c),

ˆ ˆ ˆ   (18a),

i i i
i

i i i
i

i i i
i

i i i
i

ρ η ρ ρ

ρ η ρ ρ

ρ η ρ ρ

ρ η ρ ρ

= ∑ ⊗ ⇒

= ∑ ⊗ ⇒

= ∑ ⊗ ⇒

= ∑ ⊗ ⇒

 (19) 

and 

 

,12 ,34

,13 ,24

,14 ,23

ˆ ˆ ˆ  (18c),

ˆ ˆ ˆ (18a), (18b), (18c),

ˆ ˆ ˆ  (18a), (18b),

i i i
i

i i i
i

i i i
i

ρ η ρ ρ

ρ η ρ ρ

ρ η ρ ρ

= ∑ ⊗ ⇒

= ∑ ⊗ ⇒

= ∑ ⊗ ⇒

 (20) 

where the fully separable state is contained in the above several partially separable states. So the 
three inequalities in eq. (18) are sufficient to test all partially and fully separable quadripartite states. 
If the quadripartite state is cluster-like entanglement, the three inequalities in eq. (18) will be vio-
lated simultaneously. 

4  Numerical calculation and results 

According to the criterion of quadripartite GHZ-like entangled state and eq. (9), we can calculate 
the variances when we choose the same gain factor, 

1 2 3 4

2 2 2 2 2
2 3 2 3 2 3

1 1 1( ) (1 ) e (1 ) e (1 )(1 ),
4 4 2

G G G G r r
b b b bV X X gX gX g g gηξ ξ ηξ ξ ηξ ξ−+ + + = + + − + − +

 

1 2 3 4

2 2 2 2
2 3 1 4

2
2 2

2 3 1 4

1 1( ) (1 ) e ( )(1 ) e
4 8

1 1 1                                                (1 ) ( )(1 ) ,
2 2 4 8

G G G G r r
b b b bV gX X X gX g g

g g g

ηξ ξ η ξ ξ

ηξ ξ η ξ ξ

−+ + + = + + + −

+ + − + − + −
 

1 2 3 4

2 2 2 2 2
2 3 2 3 2 3

1 1 1( ) (1 ) e (1 ) e (1 )(1 ),
4 4 2

G G G G r r
b b b bV gX gX X X g g gηξ ξ ηξ ξ ηξ ξ−+ + + = + + − + − + (21) 

1 2

2
1 1

1 1( ) e (1 ),
2 2

G G r
b bV Y Y ηξ ηξ−− = + −  
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2 3

2
2 3 1 4 2 3 1 4

1 1 1 1 1 1 1( ) ( )e ,
4 8 8 2 4 8 8

G G r
b bV Y Y ηξ ξ ηξ ηξ ηξ ξ ηξ ηξ−− = + + + − − −  

 
3 4

2
4 4

1 1( ) e (1 ).
2 2

G G r
b bV Y Y ηξ ηξ−− = + −   

We can see that the two expressions of 1 2 3 4
( )b b b bV X X gX gX+ + +  and 1 2 3

( b b bV gX gX X+ + + 

4
)bX  are the same, and a little bit different from the expression of 

1 2 3 4
( )b b b bV gX X X gX+ + + , 

which leads to a little difference of the optimal gain factor. For simplicity and without loss of 
generality, the same gain factor is used in the calculation. Minimizing the left hand of the first 
inequality in eq. (13), the optimal gain factor of quadripartite GHZ-like entanglement is obtained: 

 opt

4
2 3

2 2 2
2 3

(e 1)
.

(e 1) 2e

r
G

r rg
ηξ ξ

ηξ ξ
−

=
− +

 (22) 

According to the criteria of quadripartite cluster-like state in eqs. (18) and (12), we calculated 
the variances for judging the quadripartite cluster-like entanglement, 

1 2 3

2 22
2 23 3 3

3 2 3 4 2 3

2 2 2
3 3 3

2 3 4

1 1( ) 1 e 1 e
4 2 8 4 2

1 1                                     ,
2 4 2 8 8

C C C r r
b b b

g g g
V X X g X

g g g

ηξ ξ ηξ ηξ ξ

ηξ ξ ηξ

−
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟+ + = + + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞

+ + − + −⎜ ⎟
⎝ ⎠

 

3 4

2
4 4

1 1( ) e (1 ),
2 2

C C r
b bV X X ηξ ηξ−− = + −  

1 2

2
1 1

1 1( ) e (1 ),
2 2

C C r
b bV Y Y ηξ ηξ−− = + −  

2 3 4

2 22
2 22 2 2

2 2 3 1 2 3

2 2 2
2 2 2

2 3 1

1 1( ) 1 e 1 e
4 2 8 4 2

1 1                                     ,
2 4 2 8 8

C C C r r
b b b

g g gV g Y Y Y

g g g

ηξ ξ ηξ ηξ ξ

ηξ ξ ηξ

−
⎡ ⎤⎛ ⎞ ⎛ ⎞− + + = + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞

+ + − + −⎜ ⎟
⎝ ⎠

           

(23)

 

1 2 3

2 2
21 1

1 2 3 4

2 2
21 1

2 3 1

2 2
1 1

1

1 3( 2 ) e
4 2 2 2

(1 )1 1                                      e
4 2 2 8

(1 )5 1                                      
4 4 8 4

C C C r
b b b

r

g gV g X X X

g g

g g

ηξ ξ ηξ

ηξ ξ ηξ

ηξ

−
⎡ ⎤⎛ ⎞+ + = + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤−⎛ ⎞+ − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

−
+ + − −

2 2
1 1

2 3 4
3 1 1 ,
2 2 2 2 2

g g
ηξ ξ ηξ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

2 3 4

2 2
24 4

4 2 3 1

2 2
24 4

2 3 4

2 22 2
4 4 4 4

4 2 3 1

1 3( 2 ) e
4 2 2 2

(1 )1 1  e
4 2 2 8

(1 )5 1 3 1 1  .
4 4 8 4 2 2 2 2 2

C C C r
b b b

r

g gV Y Y g Y

g g

g g g g

ηξ ξ ηξ

ηξ ξ ηξ

ηξ ηξ ξ ηξ

−
⎡ ⎤⎛ ⎞− + + = + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤−⎛ ⎞+ − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤− ⎛ ⎞ ⎛ ⎞+ + − − + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦
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The optimal gain factors of the quadripartite cluster-like entanglement are calculated from eqs. 
(18) and (23). Supposing 1ξ = 4 ,ξ  we get the optimal gain factors 2opt

Cg ＝ 3opt
Cg , 1opt

Cg = 4opt
Cg , which 

are expressed by 

 2opt 3opt

4
2 3

2 2 2 2
2 3 4

2 (e 1)
,

4e (e 1) 2 (e 1)

r
C C

r r rg g
ηξ ξ

ηξ ξ ηξ
−

= =
+ − − −

 (24) 

 1opt 4opt

2 2 2 2
1 2 3 4

2 2 2 2 2 2
1 2 3 4

[ e (e 3) e ](e 1)
.

(e 1)e (e 1) [4 (e 1)]e

r r r r
C C

r r r r rg g
η ξ ξ ξ ξ

ηξ ηξ ξ ηξ
+ + + −

= =
− + − + + −

 (25) 

The left hands of the three inequalities in eq. (13) have totally analogous dependency on the 
squeezing parameter r. In the following, we numerically calculate the function of the correlation 
variance combination versus r in the inequality of eq. (13a) which are shown in Figure 3. Curve a in 
Figure 3 corresponds to the ideal case with 1 4ξ − → 1, η → 1 and g = 1. We can see that when r > 
0.203 (corresponding to the initial squeezing degree above 1.76 dB), the correlation variances in 
the left hands of eq. (13) are below the normalized SNL, i.e. the four modes generated is in a 
quadripartite GHZ-like entangled state. Curve b in Figure 3 is drawn with 1 4ξ − → 1, η → 1 and   

g = opt
Gg  (the optimal gain). In this case, all variances are below the SNL for any squeezing of r > 0. 

Curve c in Figure 3 denotes the imperfect case with 1ξ = 4ξ = 0.9, 2ξ = 3ξ = 0.95, η = 0.9 and g = opt
Gg , 

the variances of which are always higher than the ideal curve b. For larger squeezing of r > 0.8, the 
correlation variances in curves a and b tend to identical values. However, for smaller squeezing, the 
effect of the gain factor is significant. If taking g = 1 (curve a), the correlation variances are larger than 

the SNL when r < ~ 0.2, but if taking g = opt
Gg  (curve b), the multipartite GHZ-like entanglement always 

exists for r > 0. 
 

 
 

Figure 3  The functions of the correlation variances of the left hands in inequality (13a) of quadripartite GHZ-like entanglement 
criteria versus the squeezing parameter. a, The ideal case with g = 1; b, the ideal case with the optimal gain factor; c, the nonideal 
case with the optimal gain factor. 
 

The expressions of the left hands of the inequalities (18a) and (18b) are analogous, so the de-
pendencies of the correlation variances on the squeezing parameter r must be similar also. How-
ever the inequality (18c) is different from (18a) and (18b), so we numerically calculate the de-
pendencies of (18a) and (18c) which are drawn in Figures 4 and 5, respectively. The functions of the 
correlation variances on the left hands of inequality (18a) versus the squeezing parameter are shown in 
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Figure 4. Curve a in Figure 4 shows that the correlation variances of inequality (18a) are below the 
normalized SNL when r > 0.347 (corresponding to the initial squeezing degree above 3 dB) with 

1 4ξ − → 1, η → 1 and g = 1, i.e. the inequality (18a) is violated. Curves b and c correspond to g = 2opt
Cg  

but ideal ( 1 4ξ − → 1, η → 1) and nonideal ( 1ξ = 4ξ = 0.9, 2ξ = 3ξ = 0.95, η = 0.9) cases. The similar 
conclusions to the above discussion for Figure 3 can be obtained. 
 

 
 
Figure 4  The functions of the correlation variances of the left hands in inequality (18a) of quadripartite cluster-like entanglement 
criteria versus the squeezing parameter. a, The ideal case with g = 1; b, the ideal case with the optimal gain factor; c, the nonideal 
case with optimal gain factor. 
 

 
 

Figure 5  The functions of the correlation variances of the left hands in inequality (18c) of quadripartite cluster-like entanglement 
criteria versus the squeezing parameter. a, The ideal case with g = 1; b, the ideal case with the optimal gain factor; c, the nonideal 
case with the optimal gain factor. 
 

The functions of the correlation variances on the left hand of inequality (18c) versus the 
squeezing parameter are shown in Figure 5. The curve a in Figure 5 shows that the correlation 
variances of inequality (18c) are below the normalized SNL (value 2) when r > 0.203 (corresponding to 
the initial squeezing degree above 1.76 dB), 1 4ξ − → 1, η → 1 and g = 1, i.e. the inequality (18c) is 
violated. Curve b in Figure 5 denotes that inequality (18c) is violated when r > 0.147 (corresponding to 

the initial squeezing degree above 1.28 dB), 1 4ξ − → 1, and η → 1 if taking g = 1opt
Cg . Curve c in 

Figure 5 corresponds to the nonideal case with the optimal gain factor, where 1ξ  = 4ξ = 0.9, 2ξ = 3ξ = 

0.95, η = 0.9. Inequality (18c) is violated when r > 0.192 (corresponding to the initial squeezing degree 
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above 1.28 dB). Comparing Figures 3－5, we can draw a conclusion that the quadripartite GHZ-like 
entangled state can be generated when the squeezing parameter is nonzero, while the quadripartite 
cluster-like entangled state can be generated only when the initial squeezing degree is above a certain 

level, even for the case taking g = 1opt
Cg  with ideal transmission and detection efficiencies. So the ex-

perimental conditions for generating the quadripartite cluster-like state are stricter than that needed for 
GHZ-like state. 

5  Conclusion 

We designed the generation systems of CV quadripartite GHZ-like and cluster-like entangled states 
in which the quadrature squeezed states from NOPAs and linear optical transforms were utilized. 
The dependencies of the quadripartite entanglement on the initial squeezing degree, the transmission 
efficiencies of the system and the detection efficiency of homodyne detection were calculated based on 
the inseparable criteria for CV quadripartite entanglement. The calculated results provide the theoretical 
reference for the designs of experimental systems. 
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